Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
BMJ ; 370: m3379, 2020 09 04.
Article in English | MEDLINE | ID: covidwho-2316359

ABSTRACT

UPDATES: This is the twelfth version (eleventh update) of the living guideline, replacing earlier versions (available as data supplements). New recommendations will be published as updates to this guideline. CLINICAL QUESTION: What is the role of drugs in the treatment of patients with covid-19? CONTEXT: The evidence base for therapeutics for covid-19 is evolving with numerous randomised controlled trials (RCTs) recently completed and under way. The emerging SARS-CoV-2 variants (such as omicron) and subvariants are also changing the role of therapeutics. This update provides updated recommendations for remdesivir, addresses the use of combination therapy with corticosteroids, interleukin-6 (IL-6) receptor blockers, and janus kinase (JAK) inhibitors in patients with severe or critical covid-19, and modifies previous recommendations for the neutralising monoclonal antibodies sotrovimab and casirivimab-imdevimab in patients with non-severe covid-19. NEW OR UPDATED RECOMMENDATIONS: • Remdesivir: a conditional recommendation for its use in patients with severe covid-19; and a conditional recommendation against its use in patients with critical covid-19. • Concomitant use of IL-6 receptor blockers (tocilizumab or sarilumab) and the JAK inhibitor baricitinib: these drugs may now be combined, in addition to corticosteroids, in patients with severe or critical covid-19. • Sotrovimab and casirivimab-imdevimab: strong recommendations against their use in patients with covid-19, replacing the previous conditional recommendations for their use. UNDERSTANDING THE NEW RECOMMENDATIONS: When moving from new evidence to updated recommendations, the Guideline Development Group (GDG) considered a combination of evidence assessing relative benefits and harms, values and preferences, and feasibility issues. For remdesivir, new trial data were added to a previous subgroup analysis and provided sufficiently trustworthy evidence to demonstrate benefits in patients with severe covid-19, but not critical covid-19. The GDG considered benefits of remdesivir to be modest and of moderate certainty for key outcomes such as mortality and mechanical ventilation, resulting in a conditional recommendation. For baricitinib, the GDG considered clinical trial evidence (RECOVERY) demonstrating reduced risk of death in patients already receiving corticosteroids and IL-6 receptor blockers. The GDG acknowledged that the clinical trials were not representative of the world population and that the risk-benefit balance may be less advantageous, particularly in patients who are immunosuppressed at higher risk of opportunistic infections (such as serious fungal, viral, or bacteria), those already deteriorating where less aggressive or stepwise addition of immunosuppressive medications may be preferred, and in areas where certain pathogens such as HIV or tuberculosis, are of concern. The panel anticipated that there would be situations where clinicians may opt for less aggressive immunosuppressive therapy or to combine medications in a stepwise fashion in patients who are deteriorating. The decision to combine the medications will depend on their availability, and the treating clinician's perception of the risk-benefit balance associated with combination immunosuppressive therapy, particularly in patient populations at risk of opportunistic infections who may have been under-represented in clinical trials. When making a strong recommendation against the use of monoclonal antibodies for patients with covid-19, the GDG considered in vitro neutralisation data demonstrating that sotrovimab and casirivimab-imdevimab evaluated in clinical trials have meaningfully reduced neutralisation activity of the currently circulating variants of SARS-CoV-2 and their subvariants. There was consensus among the panel that the absence of in vitro neutralisation activity strongly suggests absence of clinical effectiveness of these monoclonal antibodies. However, there was also consensus regarding the need for clinical trial evidence in order to confirm clinical efficacy of new monoclonal antibodies that reliably neutralise the circulating strains in vitro. Whether emerging new variants and subvariants might be susceptible to sotrovimab, casirivimab-imdevimab, or other anti-SARS-CoV-2 monoclonal antibodies cannot be predicted. PRIOR RECOMMENDATIONS: • Recommended for patients with severe or critical covid-19­strong recommendations for systemic corticosteroids; IL-6 receptor blockers (tocilizumab or sarilumab) in combination with corticosteroids; and baricitinib as an alternative to IL-6 receptor blockers, in combination with corticosteroids. • Recommended for patients with non-severe covid-19 at highest risk of hospitalisation­a strong recommendation for nirmatrelvir/ritonavir; conditional recommendations for molnupiravir and remdesivir. • Not recommended for patients with non-severe covid-19­a conditional recommendation against systemic corticosteroids; a strong recommendation against convalescent plasma; a recommendation against fluvoxamine, except in the context of a clinical trial; and a strong recommendation against colchicine. • Not recommended for patients with non-severe covid-19 at low risk of hospitalisation­a conditional recommendation against nirmatrelvir/ritonavir. • Not recommended for patients with severe or critical covid-19­a recommendation against convalescent plasma except in the context of a clinical trial; and a conditional recommendation against the JAK inhibitors ruxolitinib and tofacitinib. • Not recommended, regardless of covid-19 disease severity­a strong recommendations against hydroxychloroquine and against lopinavir/ritonavir; and a recommendation against ivermectin except in the context of a clinical trial. ABOUT THIS GUIDELINE: This living guideline from the World Health Organization (WHO) incorporates new evidence to dynamically update recommendations for covid-19 therapeutics. The GDG typically evaluates a therapy when the WHO judges sufficient evidence is available to make a recommendation. While the GDG takes an individual patient perspective in making recommendations, it also considers resource implications, acceptability, feasibility, equity, and human rights. This guideline was developed according to standards and methods for trustworthy guidelines, making use of an innovative process to achieve efficiency in dynamic updating of recommendations. The methods are aligned with the WHO Handbook for Guideline Development and according to a pre-approved protocol (planning proposal) by the Guideline Review Committee (GRC). A box at the end of the article outlines key methodological aspects of the guideline process. MAGIC Evidence Ecosystem Foundation provides methodological support, including the coordination of living systematic reviews with network meta-analyses to inform the recommendations. The full version of the guideline is available online in MAGICapp and in PDF, with a summary version here in The BMJ. These formats should facilitate adaptation, which is strongly encouraged by WHO to contextualise recommendations in a healthcare system to maximise impact. Future recommendations: Recommendations on anticoagulation are planned for the next update to this guideline.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , Betacoronavirus , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , COVID-19 , Humans , Pandemics , SARS-CoV-2 , World Health Organization , COVID-19 Drug Treatment
2.
Indian J Pediatr ; 90(2): 107-109, 2023 02.
Article in English | MEDLINE | ID: covidwho-2242830

Subject(s)
Pediatrics , Publishing , Humans , Child
3.
Pathogens ; 11(2)2022 Feb 01.
Article in English | MEDLINE | ID: covidwho-1667265

ABSTRACT

Over the past 15 years, and despite many difficulties, significant progress has been made to advance child and adolescent tuberculosis (TB) care. Despite increasing availability of safe and effective treatment and prevention options, TB remains a global health priority as a major cause of child and adolescent morbidity and mortality-over one and a half million children and adolescents develop TB each year. A history of the global public health perspective on child and adolescent TB is followed by 12 narratives detailing challenges and progress in 19 TB endemic low and middle-income countries. Overarching challenges include: under-detection and under-reporting of child and adolescent TB; poor implementation and reporting of contact investigation and TB preventive treatment services; the need for health systems strengthening to deliver effective, decentralized services; and lack of integration between TB programs and child health services. The COVID-19 pandemic has had a significant negative impact on case detection and treatment outcomes. Child and adolescent TB working groups can address country-specific challenges to close the policy-practice gaps by developing and supporting decentral ized models of care, strengthening clinical and laboratory diagnosis, including of multidrug-resistant TB, providing recommended options for treatment of disease and infection, and forging strong collaborations across relevant health sectors.

4.
Indian J Pediatr ; 89(4): 404-406, 2022 04.
Article in English | MEDLINE | ID: covidwho-1653777

ABSTRACT

Children with cystic fibrosis (CF) constitute a high-risk group for COVID-19 with underlying chronic lung disease. COVID-19 severity varying from mild infection to need of intensive care has been described in children with CF. Two children with significant underlying pulmonary morbidity are described here, who developed severe disease following SARS-CoV-2 infection. Case 1 (a 9-y-old boy) had pneumonia with respiratory failure requiring noninvasive ventilation support. He had delayed clearance of SARS-CoV-2, with recurrence of symptomatic disease with short asymptomatic period in between. He was also diagnosed with CF-related diabetes and allergic bronchopulmonary aspergillosis during the second episode. Case 2 (an 18-mo-old boy) had two episodes of SARS-CoV-2-related severe lower respiratory infection within a period of 2 mo, requiring high-flow nasal oxygen support. Both children had 3rd pulmonary exacerbation but SARS-CoV-2 was not detected in respiratory secretions. To conclude, children with CF with underlying pulmonary morbidity, can develop severe COVID-19 and prolonged SARS-CoV-2 shedding.


Subject(s)
COVID-19 , Cystic Fibrosis , COVID-19/complications , Child , Cystic Fibrosis/complications , Humans , Lung , Male , Respiration, Artificial , SARS-CoV-2
5.
J Clin Virol Plus ; 2(1): 100061, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1616570

ABSTRACT

Background: SARS-CoV-2 infection in children frequently leads to only asymptomatic and mild infections. It has been suggested that frequent infections due to low-pathogenicity coronaviruses in children, impart immunity against SARS-CoV-2 in this age group. Methods: From a prospective birth cohort study prior to the pandemic, we identified children with proven low-pathogenicity coronavirus infections. Convalescent sera from these children were tested for antibodies against respective seasonal coronaviruses (OC43, NL63, and 229E) and SARS-CoV-2 by immunofluorescence and virus microneutralization assay respectively. Results: Forty-two children with proven seasonal coronavirus infection were included. Convalescent sera from these samples demonstrated antibodies against the respective seasonal coronaviruses. Of these, 40 serum samples showed no significant neutralization of SARS-CoV-2, while 2 samples showed inconclusive results. Conclusion: These findings suggest that the antibodies generated in low-pathogenicity coronavirus infections offer no protection from SARS-CoV-2 infection in young children.

6.
Pediatr Infect Dis J ; 39(12): e452-e454, 2020 12.
Article in English | MEDLINE | ID: covidwho-762166

ABSTRACT

In this birth cohort, coronavirus acute respiratory infection was detected in 6.5% of the episodes; the commonest strain was OC43, followed by NL63, HKU1, and 229E. Children with coronavirus acute respiratory infection during infancy had significantly decreased forced expiratory volume in 0.5 seconds, forced expiratory flow between 25% and 75% of forced vital capacity, and peak expiratory flow at 3 years of age.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/physiopathology , Coronavirus , Health Impact Assessment , Lung/physiopathology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/physiopathology , Child, Preschool , Cohort Studies , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Female , Follow-Up Studies , Humans , India/epidemiology , Infant , Infant, Newborn , Lung/virology , Male , Public Health Surveillance , Recurrence , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , Symptom Assessment
7.
Front Mol Biosci ; 7: 586254, 2020.
Article in English | MEDLINE | ID: covidwho-1021900

ABSTRACT

The gold standard for the diagnosis of SARS-CoV-2, the causative agent of COVID-19, is real-time polymerase chain reaction (PCR), which is labor-intensive, expensive, and not widely available in resource-poor settings. Therefore, it is imperative to develop novel, accurate, affordable, and easily accessible assays/sensors to diagnose and isolate COVID-19 cases. To address this unmet need, we utilized the catalytic potential of peroxidase-like DNAzyme and developed a simple visual detection assay for SARS-CoV-2 RNA using a conventional thermal cycler by the PCR-induced generation of DNAzyme sensor. The performance of RT-PCR DNAzyme-based sensor was comparable to that of real-time PCR. The pilot scale validation of RT-PCR DNAzyme-based sensor has shown ~100% sensitivity and specificity in clinical specimens (nasopharyngeal swab, n = 34), with a good correlation (Spearman r = 0.799) with the Ct-value of fluorescence probe-based real-time PCR. These findings clearly indicate the potential of this inexpensive, sensitive, and specific molecular diagnostic test to extend our testing capabilities for the detection of SARS-CoV-2 to curtail COVID-19 transmission.

SELECTION OF CITATIONS
SEARCH DETAIL